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ABSTRACT

The mathematics of Markov decision processes and related
techniques are used to analyze a model relevant to salmon
management. It is shown that the choice of grid can have a
significant effect on the results obtained. Optimal policies
that maximize total expected discounted return may be too variable.
Smoothing costs are included to trade off long-run total return
against the smoothness of the year-to-year fluctuations in the
allowed harvest. Simpler, approximate policies that have a
smoothing effect are also found. Preliminary analysis suggests
the results are robust against misspecification of the parameters
of the model. Concepts such as MSY (maximum sustainable yield)
would seem to impute a very high smoothing cost, and are probably
not practical for fish populations with a significant degree of

randomness.



INTRODUCTION

The history of most managed natural populations is one of sizable,
non-deterministic variations in the dynamics of the population. This
observed variation tends to have two sources: The first source is
actual randomness in the system, such as that due to environmental
variability, which will exist no matter how accurate our models become.
The second source of variability is the inaccurate or incomplete
specification of the transistion probabilities themselves. Standard
production models (Schaefer 1954; Pella and Tomlinson 1969, Fox 1970,
1971, 1975) assume deterministic dynamics, as do most recent bioeconomic
analyses, as in Clark 1976 or Anderson 1977. For randomly varying
populations, at best only extremely low harvests may be sustainable
year to year, and it is not difficult to develop realistic scenarios
where policies that are sustainable in a deterministic model would cause
possible depletion in a stochastic model.

In this paper, the latest tools from stochastic optimization,
particularly in the area of Markov decision problems (MDPs) are used to
analyze a model relevant to salmon management. The viewpoint taken is
that of the analyst, who must analyze trade offs and provide a decision-
maker with as few policies as possible that contain the maximum amount
of information, rather than that of the decisionmaker, who ultimately
decides if a particular concern or trade off is worthwhile. The salmon
model is used as an example--the goal is to gain insight into managing

randomly varying populations.
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Ricker (1958) appears to be the first to examine the effects of
variability on management. He uses intuition and simulation to arrive
at policies that are of the same general form as many of the policies
to be discussed in this paper. However, Ricker presents no systematic
way of developing optimal policies, and he makes the incorrect assump-
tion that the long-run stochastic behavior will have a mean equal to

the deterministic equilibrium yield, with noise around this mean.

Reed (1974) derives qualitative properties of optimal policies if
the random variable has a mean of one, if it affects the population
dynamics in a multiplicative manner, and if it has costs when the system
is shut down (no harvesting), and then started up again (resumption of
harvesting). Reed's results are not relevant to the model discussed in
this paper, since he assumes the deterministic population model is concave,
while the models examined in what follows are pseudoconcave. A more
complete treatment of one dimensional stochastic growth models can be

found in Mendelssohn and Sobel (in press).

Walters (1975) and Walters and Hilborn (1976, 1978) discuss a
variety of topics as the concerns of this paper. Some of the techniques
they discuss, particularly the filtering techniques (Walters and Hilborn
1978) are only appropriate if the model has an additive error term.
While a Ricker spawner-recruit curve can be transformed to an additive

model, many models do not have this feature.
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We present what we feel is an improved way to smooth out the
fluctuations in the year—to-year harvests as compared to the method
suggested in Walters (1975), and show that the Bayesian (adaptive)
model discussed in Walters and Hilborn (1976) has an optimal policy with
a very simple form that can be readily calculated.

Moreover, a rigorous approach is taken to define the model on a
grid, and the effects of the grid choice. None of the papers cited deal
with this important question; new results are presented which show that
the most serious effect of the grid is on the estimates of the long-run
(ergodic) probabilities of the population dynamics when following a given
policy. Particularly the tail properties of the ergodic distribution,
that is the long-run probability of low harvest or low population sizes
are misestimated. This is a new finding even in the MDP literature, and
has numerical implications, particularly when calculating the trade off
between the mean harvest of a given policy and the long-run probability

of undesirable events when following that policy.

THE MODEL
The models to be analyzed were developed by Mathews {(1967) to
describe the spawner-recruit relationships of sockeye salmon,

Oncorhynchus nerka, populations in two rivers that run into Bristol Bay,

Alaska. Oceanographic and other factors affect the number of recruits

to a degree where the relationships can be modeled by the random equations:



4

Wood River: x

41 exp(d) (4.077y,) exp{—O.SOOyt}

d v N(O, 0.2098) (1.1a)

[}

Branch River: x

oy = exp(d) (4.554y ) exp{~l.845yt}

{(1.1B)
d ~ N(0, 0.3352)

where Ve is the number of spawners in period t, X is the (random)

number of recruits in period t+l, and d"vN{a, b) denotes that d is a

normally distributed random variable, with mean a and variance b.

For deterministic versions of (1.1), the primary objective of
management is MSY (maximum sustainable yield), which is equivalent to
the largest per period growth of the deterministic model. The stochastic
equivalent of this criterion is to maximize the average per period

harvest, or gain optimality. Mathematically, letting E be the expectation

operator, this is

T
1
max lim= E I (x_ - v.) (1.2a)
T t t
0 t=1
However, for many decisicnmaking situations, total expected discounted
harvest may be a preferable criterion, since a discount factor can
represent a measure of risk or uncertainty about the system, over and
above the variability due to the random variable d. More formally, if o

is a discount factor, 0 < o < 1, the problem is to:



maximize E{ at_lp . (xt - yt)} (1.2b)

N =18

t=1

subject to 0 < Y 2% and (1,1)

£}
where p is a weighting factor, which could be cne or could represent the
average weight of the salmon harvested.

All the results in this paper are for expected discounted return
with o = 0.97. Tor a = 1, criterion (1.2a) must be used, since (1.2b)
is infinite for most policies. The choice of o = 0.97 is arbitrary,

though numerical runs for o ranging from 0.95 to 1.00 produced no

significant changes in the results. When actually implementing a model,
a careful choice of O must be made, and the sensitivity of the results
to changes in the value of o should be tested. It should be mentioned
that @ = 1 is just as much a discount factor as any other value, and
implies certain temporal preferences and attitudes towards risk that may
not adequately reflect the decisionmaker's preferences.

The shortcomings of (1.1a) or (1.1b) should also be noted, such
as no account is taken of ocean harvesting of the salmon, particularly
by a foreign nation. This just reinforces the idea that the purpose of
this analysis is not optimization per se, but rather to provide the

decisiommaker with added insight and reasonable first choices.

Defining the Model on a Discrete Grid
In order to make (1.2) amenable to numerical methods, it is

necessary to define both the state space and the action space on a
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discrete grid, and then to redefine the transition probabilities etc.,

on this grid. Several authors (Fox 1973; Bertsekas 1976; Hinderer 1978;

Larraneta 1978; Waldmann 1978; Whitt 1978) have suggested techniques to

reduce MDPs to a grid, and give bounds on the error due to the approxi-
Footnote 2 mation. We have shown elsewhere (Mendelssohn MS?) that grid choice can

have a significant effect on the analysis. An optimal policy and the

value of an optimal policy may not be greatly affected by thg choice

of grid, but the estimated probabilistic behavior of the population

dynamics is affected significantly by the choice of grid.

A first effort then is to find an adequate grid for the problem,
a grid fine enough for both the desired accuracy and for realistic
approximations of observed population sizes and coarse enough for
computational efficiency. Increased computational efficiency makes it
reasonable to solve many variations of a given model, which allows for
a more thorough exploration of the management questions of interest
and their sensitivity to key assumptions.

Several different grids were tried for (1.2) for both the Branch
and Wood Rivers.

To define (1.2) on a given grid, suppose a grid of k points has
been chosen on which to discretize the problem, and assume, as is
reasonable for this problem, that the reduced action space (how many
spawners to leave) is equivalent to the state space (how many recruits
are observed at the beginning of the period). From equation (1.1),

letting Rl and R2 represent the parameters of the Ricker equation
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d
Plx ., <oly} = P Ry y exp (-Ryy) < w)

P{d < Inw - 1lna} (2.1)

where a = (Rl Y, exp (—R2 yt)> . Let ¢ be the standard normal integral

for a random variable d = —, and let X X be any two adjacent

o]

points on the grid. Then:

Inx, - lna)
.

P{d < lnx, - 1na}=®( =

(lnxi+1 - lna)

p{d < Inx,,, - Ina} = @
< i o

+1

so that one method of defining the transition probabilities on a grid is:

1n x, - Ina lnx, - Ina
} = cI)( i+l ) —_ @(__._:.l:....._.__
T g o :

Plx iy = X4

The discrete probability when the action is Ve is equal to the total

probability of going to any state in the interval (xi, Xi+1]'

If zero is included as a state, the procedure needs to be modified
slightly. Suppose the probability of going to Xy is known for each
decision y. Then an arbitrary fraction of this probability is assigned
as going to the zero state. In this paper, one half of the probability
in the interval [0, xl] is assigned to the zero state. The results
have been found not to be sensitive to the value of the fraction; this
is because zero is an absorbing state. Either there exists a policy
that never reaches [0, xl] and hence never reaches zero, or else with
probability one the population goes to zero in finite time. Hence, it
ig the size of [0, Xl] that most influences the results, not the fraction

of this total that is assigned to going to the absorbing state.
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Adding an absorbing state is sensiﬂle if the absorbing state is
thought of as all states at low enough population levels such that it
would take years for the fishery to recover again, if it recovers at
all. Without the absorbing state, the models in (1l.la, b) will always
recover in fairly short order. Since fisheries can be depleted, the
inclusion of an absorbing state would seem to be a more realistic

assumption. It is included in what follows.

A coarser grid implies, in a sense, less information about the
state of the system. As the interval [0, xl] becomes large, our
information has decreased about the true state of the population and
this increased uncertainty is reflected in increased risk of absorptiomn.
Similarly, a finer grid implies more exact information--a grid should
not be used which is finer than the precision of the estimate of the
population size.

Optimal policies for grids of 16, 26, 51, 101, and 501 equally
spaced points (including zero) for both rivers are shown in Table 1.
The optimal equilibrium population for the equivalent deterministic
models are shown also. All numbers are in units of 106 fish.

The optimal policies are all of the base stock variety, that is
it is optimal to harvest to a fixed number of spawners, or else not to
harvest at all. If the 50l-point grid is taken as the standard, it
can be seen that each coarser grid has as its base stock size the grid

point closest to the base stock size for the 501-point grid.
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Fig. 1 Figures la and 1lb give the long-run (ergodic) cumulative distri-
bution of being in any state when following an optimal policy omn grids
of 16, 26, 51, and 101 points. Crid size can be seen to play a crucial
part in estimating the probabilistic behavior of the population. For
the Wood River, extinction with probability one is predicted on grids
of 16 and 26 points, while the probability is zeroc on grids of 51 and
101 points, so long as zerc is not the initial state. Similar but not
identical results are valid for the Branch River. It should be emphasized
that for o = 1, that is when the objective is given by (1.2a), the
estimated average per period harvest of any policy depends entirely on
the ergodic distribution that arises from that policy. Therefore, this
variation in estimated long-run behavior due to changes in grid size is

non-trivial.

Probability one of extinction occurs because for a finite state,
irreducible Markov chain with an absorbing state, the absorbing state is
reached in finite time with probability one. However, for the larger
grids, there exist policies that are reducible, in the sense that if the
chain does not start in the interval [0, xl], it will never enter that
interval. Since P{xtE[O,xl]} = 0, and a fraction of this probability
has been assigned to the zero state, then P{xt = 0} = 0. When using the
smaller grids that induce Markov chains that are irreducible, the

estimated time till absorption varies greatly also. For example, for

the Branch River, if P{x1 =0} = 0 and P{xl = w} =~ﬁ%I, where & is a
grid point and N is the number of states, then a 1l6-point grid predicts

absorption with probability ome after 2,000 iterations, the 26-point
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grid predicts only a 76% chance of absorption after 2,000 iterations,
and the 51-point grid predicts only a 17% chance of absorption.

When maximizing total expected discounted return, the discounted
mean return depends on the values of these intermediate probability
distributions, so that coarser grids can be expected to underestimate
the long-run value of the harvest.

Finally, for the Wood River, note that the 51- and 101-point grids
have similar long-run behavior. These results suggest that in order to
find good policies, it is only necessary to use a grid size of 26 to 51
points for the problems under consideration. However, to analyze the
long-run (probabilistic) behavior of a givem policy, it is necessary to

use a grid containing no fewer than 100 points.

It should be reemphasized that the reason for considering a
coarser grid is that a smaller problem size allows for many problems
to be solved at a small cost. This is desirable to obtain insight into
the sensitivity of the problem. However, it is possible to solve quite
large problems, making use of a variety of methods to accelerate compu-
tations (see for example Porteus 1971; Hastings and van Nunen 1977).
For example, the 501-point grid for the Branch River used 1.80 sec of
CPU (central processing unit) time to perform the optimization. Compu-
tations, when smoothing costs are included (section 3), have 2,601 states.
These used about 5 to 6 min of CPU time to perform the computations, but
at a cost of about $20. Our experience is that it is possible to obtain
reasonable estimates using coarse grids, and that this suffices for initial
policy investigation. However, it is worthwhile to reanalyze the final

two or three problems of greatest interest on a finmer grid.
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POLICY ANALYSIS

For the Wood River, the optimal policy for (1.2) is given by
Ve = minimum (0.770, xt)

and it produces a mean per period harvest of 1.14758, and a standard
deviation in the harvest of 0.8963: The median harvest is 0.91, and no
harvest occurs roughly 4.3% of the time. A harvest of 25% or less of
the mean harvest ocecurs roughly 15% of the time, while a harvest greater
than the mean harvest occurs approximately 38% of the time.

Similarly, for the Branch River, an optimal policy for (1.2)

is given by
Ve = minimum {0.300, xt}

and it produces a mean per period harvest of 0.6622, and a standard
deviation in the harvest of 0.6120. The median harvest is roughly
0.500, there is a 3.9% chance of no harvest. A harvest of 25% of the
mean harvest or less occurs roughly 14.5% of the time, and a harvest
greater than the mean harvest occurs approximately 61% of the time.
While these policies are similar in form to policies that are
optimal for a deterministic version of (1.2), they differ greatly in
the yvear-to—year dynamics. There are two ways of finding the optimal
deterministic policy. The first way is to assume a general model of

the form:
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X4 = Ry exp {-Ryyd

The second method is to assume a general model of the form:

X = Eexp(d) R, y, exp {—R2 yt}

t+1

where as before, Rl and R2 are the parameters of the Ricker equation.
The second method is preferable, since it uses all the information
available. As d is a normal random variable with mean zero and
variance 0%, it is easy to show that expld} is a lognormal random

variable with expectation exp{¥. o®}. Solving for the optimum sustained

yield population size for each river gives:

Wood River Branch River
X5y 0.735 0.345
0sY 1.11346 0.63804

Both 0SY values are lower than the mean per period harvests in
the stochastic models, but the variation is too high to allow this
amount to be harvested each year. However, the Xngy level is a good
estimate of the base stock size, and it is known a priori from
Mendelssohn and Sobel (in press) that a base stock policy is optimal.

In the deterministic model, once Xoay is reached, both the
population size and the harvest size are maintained at steady,
equilibrium levels. An optimal policy for the stochastiec model, however,

produces large fluctuations in both, and may allow no harvesting 1 year

out of 25 in the long run. For many fisheries, these "boom and bust"
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conditions may not be acceptable. Many people, especially those with
interest or mortgage payments, as are many fishermen, are concerned
about smoothness of income received as well as the total amount received.
The final decision on the acceptable amount of fluctuation is of course
up to the decisionmaker with appropriate input.

There are several methods available to try to find a balance between
the smoothness of the random income stream and its total discounted
expected value. Walters (1975) and Walters and Hilborn (1978) suggest
fixing a given mean harvest u, and then finding a policy that minimizes

T

limE-l % (z —1ﬂ2. This methodology depends on the values of u chosen.
T gt

It also determines the policy that minimizes the approximate long-run
variance for a given long-run mean harvest. This is not equivalent to
reducing the size of the year-to-year fluctuations.

A second method is to include "smoothing costs" into the one-period

return. This approach has been studied analytically in Mendelssohn

A

(ié&%%. Let ¥ be the cost of a unit decrease in the harvest from year
to yvear, and let £ be the cost of a unit increase in the harvest from
year to year.

If z was harvested last year, then net revenues this year, for any

harvest z , are decreased by

. - >
Y ¢ (z zt) if z > 2z,
0 z=zt
e {(z_ - z) z <z
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Amended to €1.2), this would imply a one-period net benefit of
+ +
p°(xt-yt)-\f'(z- (xt-yt)) - € ((xt-yt)-z)

+ _ i
where (a) denotes the positive part of a. An alternate form is to

let e = I%%E and ¢ = I%%E. Then the one-period return is:
p -(xt - yt) + e -(xt - yt) - C -l(xt - yt) -~z | -evez

One advantage to the smoothing cost approach over other approaches
is that p, e, and c can be normalized so as to be interpreted as relative
prices. That is, the normalized values p = 1, e/p and c/p can be
interpreted as the value of having the between period harvest "smoothed"
by one unit relative to the value of one unit of additional harvest.
Actual relative values are often difficult to determine. But by
parameterizing on e and ¢, it is possible to present a decisionmaker
not only a range of possible "optimal policies and their consequences,
but also some feeling for the relative trade off between total income

and the smoothness of the received income stream.

For the Wood and Branch Rivers, two sets of computations were
performed. The first set assumes that Yy = €, that is there is an equal
concern for increases in allowable harvest as well as for decreases.

This equivalent to e = 0.0, and ¢ = v (or equivalently €). The motiva-
tion for this cost structure is that fishermen typically resist any
decrease in the allowed harvest, hence Y > 0. However, allowing increases
in the harvest size often signals fishermen to gear up and invest in

equipment, thereby making it even more difficult to decrease the aliowable
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Harvest later on. Therefore this cost should be equal to a cost
due to a decrease in the harvest.
As a counterbalance to this, a second set of computations
were performed with v > 0 but € = 0, that is a cost only if the

harvest is decreased. This is equivalent to c %n

fl
©
If

For the first set of computations, with e 0.0 and p = 1.0,
values of ¢ of 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, and 2.00
were used. These are equivalent to relative values of Y, Yo %,
Yo, s, Y4, /o, and 1. TFor the second set of rums, with ¢ = e, and
p = 1.0, values of 0.25, 0.50, 0.75, 1.00, and 1.25 were used. These
are equivalent to a ratio of y/p equal to %A, Y, %, 1, 1% . The

Figs. 2,3 results are summarized in Figures 2(a)-(m) and Figures 3(a)-(m),

which show an optimal policy for each river for each of these cases.

All computations were performed on 26-polnt grids.

The figures are read as follows. Suppose z was harvested last
yvear, and X is the observed population size this pericd. Find the
point (x, z) on the graph, and follow the arrow in that zone to
the appropriate boundary as indicated. Then read off the z value
of this point, and this is the optimal amount to harvest this peried.

For example, if ¢ = 0.50, e = 0,00, x,_ = 0.84, and the harvest

t
last period was 0.28, Figure 2(b) says an optimal policy for the
Wood River is to harvest 0.28 this period. Note that the dashed

line is the equivalent base stock harvest with no smoothing costs.
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While the policies in Figures 2 and 3 are optimal for the given
relative values of p, e, and c, they are complex in nature, and
would be difficult for a layperson to understand. Practical
management often implies determining simpler, good but suboptimal
policies that achieve the same objectives. These policies are often
more desirable since they are easier to implement and easier to

explain the rationale to the public.

As an example of suboptimal, approximate policies, the following
nine modified base stock policies were examined :

Wood River

1) Base stock policy, base stock size = 0.84.

2) Policy of base stock size of 0.56 till 2.52, then a base stock

size of 0.84.

3) Policy of base stock size of 0.56 till 1.40, then a base stock -

size of (.84,
4) Harvest zero till 0.28, harvest 0.28 till 0.84, a base stock

size of 0.56 till 2.52, then a base stock size of 0.84.

Branch River

5) Base stock policy, base stock size of 0.40.

6) Base stock size of 0.4 till 1.6, then a base stock size of 0.6.
7) Base stock size of 0.2 till 0.6, then a base stock size of 0.4.
8) Base stock size of 0.2 till 1.0, then a base stock size of 0.4.
9) Base stock size éf 0.2 till 0.4, base stock size of 0.4 till

1.2, base stock size of 0.6 after that.
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These nine approximate policies were devised by examining the
functions that define the three regions in Figures 2 and 3. These
approximate the boundaries of the three regions where the smoothing
costs are Y, to Y the per unit value of the harvest. The mean per
period harvest, variance, standard deviation, median per period

Table 2 harvest etc., for these nine policies are given in Table 2.

Policies 3 and 4 for the Wood River and 8 and 9 for the Branch
River demonstrate how these approximate policies tend toward smoothing
policies. TFor example, policy 4 has the same median harvest as the
optimal base stock harvest, almost never closes the fishery,
significantly decreases the percent of time there are low catches,
and only reduces the mean per period harvest by 33,800 fish. 1In
order to achieve a smoother catch, "potlatch" harvests from time to
time have been sacrificed.

When looked at closely, these policies are actually very intuitive,
and represent an interesting variant of a base stock policy. These

policies replace a single base stock size by a dual base stock size

policy. The first base stock size is lower than the original one,
while the second base stock size is greater than or equal to the
original base stock size. This means that there are fewer states
where there is no harvesting, but alse lowers the likelihood of the
really big harvests. The mean per period harvest tends to be very
gsensitive to these big harvests, while the median is not, particu-

larly since the very large harvests are not too frequent.
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It is curious that the population dynamics are so sensitive to
such fine tuning, for the difference between policy 1 and policy 3,
say, is quite marginal. It would be an interesting area of future
research to determine guidelines for when fine tuning would be
expected to produce such "trimming" of the tails of the ergodic
{(long-run probability) distribution.

Including smoothing costs also tells us a great deal about
traditional concepts of fisheries management, such as MSY. It is
clear from Figures 2 and 3 that anything close to an MSY policy is
optimal only if the smoothing costs exceed the per unit value of the
harvest. As whole systems of laws for regulating fisheries have been
constructed around the idea of smooth, constant harvests, it is clear
that this imputes lower average catches, and a significant preference
for constancy of the harvest over total amount harvested.

The analysis has assumed that equation (1.1) or similar equatiomns
are available, and that the parameter estimates are accurate (in this
case, estimates of Rl’ Ry, and 02). 1In the latter case, management
measutes would seem more reasonable if they were known to be robust
against misspecifying the parameters. This invelves knowing how an
optimal policy and total expected value would vary if the true
underlying parameter valuves differ from those specified, and also
how the estimate of the long-run probability distribution differs
from the true one.

Walters and Hilborn (1976) have examined a similar question

of trying to solve the Bayes model of this problem, that is, where
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there is an original prior probability given to each value of the
parameter, and this probability is updated each period using Bayes'
theorem and the observed values during the period. However, they
could not obtain a solution, and in Walters and Hilborn (1978) raise
questions as to the validity of some of their numerical approximations.

Fortunately, qualitative results are possible for this particular
class of Bayes problems. Let O be the parameter (or vector of parameters)
under consideration. Let qo(e) be the initial prior distribution on 8,
and let qn(e) be the updated prior distribution after n period have
elapsed. Let § be the set of all possible prior distributions. Then it
is proven in van Hee (1977a) that if the state of the system is expanded
to (xt, qt), the resulting optimization problem is Markovian. Following
arguments similar to those in Scarf (1959)and van Hee (1977a) it follows
that an optimal Bayes policy takes the form:

For each element q €, there is an x(q) such that:

Do not harvest if x_ < x{q)

Harvest X - x(q) if x> x{q)

For example, 1f g2 in the distribution of d is itself a random variable,
then each possible probability distribution of g2 yields a possibly unique
base stock size policy.

Van Hee (1977a) defines a set of policies that he terms Bayes

equivalent policies. For problems such as the salmon models under

discussion, a Bayes equivalent policy would be found as fellows:
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(1) At the start of the period, the prior probability distribution
is q(8).
(ii) The expected transistion function (expectation with respect to

8) is calculated, that is
p(d, q) = fp(|0)q(d®) (4.1)

where p(*|*) describes the dependence of the random variable d on 8.
(iii) p(d, q) is used to solve a non-Bayesian Markov decision process,
with p{d, q) as the transition function.
(iv) The optimal policy from (iii) is used for one period.
(v) q(9) is updated using Bayes theorem and the observations from the
last period, and the updated q(*) is used in (i) at the next time period.
It is worth noting that a Bayes equivalent policy is adaptive, as

the prior distribution is updated each period. Moreover, it is not the

same as fixing 0 at its estimated value, and using a fixed value of 6 in
step (iii). The difference can be seen in the integral in (4.1). The
reason for considering Bayes equivalent policies is that van Hee (1977a,
theorem 3.1) proves that for the models under discussion, when the

objective is given by (l.2a) or (1.2b), then the Bayes equivalent policy

is optimal for the full Bayes model. For example, in Walters and Hilborn

(1976), the parameter O is a scalar, for example R2 in our notation.
Their problem, for which an optimal policy was not found, can be solved by
following a policy outlined in the five steps above.

Many models will not have the necessary structure for a Bayes equiva-

lent policy to be optimal for the full Bayes model, and unlike salmon
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management, estimates of the population size may not be available every
year. A legitimate question is; suppose the present best estimate of O
were to be used from hereafter. What would be the loss in expected value?
Van Hee (1977b) gives bounds on this expected loss that are easy to
compute. To obtain a feel for these bounds, both o? and R2 are assumed
to be random variables. TFor the Wood River, R2 could take on the values
= -0.8, R

R2 = -0.6, R = -1.0, and for the Branch River R2 could take

2 2
on the values R2 = -1.5, R2 = -1.85, R2 = -2.00. For the Wood River,'d?
could assume the values of g? = 0.35, g = 0.45, 62 = 0.55, and for the
Branch River o2 could assume the values o2 = 0.48, o2 = 0.58, o* = 0.68.
Three probability distributions were used as the present prior probability
of the parameter values. These were Vs, Yoy o), Chy Yoo %y, Ches Y s
Y%). The results of the optimization using the parameters at each fixed
value (which are needed to calculate the bounds) are given in Table 3a.
Table 3b gives the bounds on the expected loss of value from using the
present estimates of the parameters as in (1.1).

Table 3a suggests that as g? varies for fixed values of Rl’ RZ’
the mean per period harvest varies little, but the variance of the
long-term harvest size distribution increases gignificantly. As R2
varies for fixed values of Rl’ g%, both the mean and the variance vary
significantly. Table 3b reinforces this impression to a degree. If the
mean per period harvest does not vary significantly with changes in the
value of ¢?, it might be expected that the present estimate of o? will
suffice. This is born out by Table 3b, where the bounds on the maximum

expected total loss is less than 0.01, which is less than 1% of the optimal

Bayes expected value.
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Some significant expected loss in wvalue when R2 varies is seen,
but the loss is less than might be expected from Table 3a. The values
in Table 3b when R2 varies are all less than 4% of the true value.

These results suggest that if (1.1) is the correct form of the model,
and the present parameter estimates have relatively small variance,

then little is gained in expected value if the more complicated policy
is used. The same may not be true if the population size is unobserved.

All of these results suggest a model that is fairly robust to our
lack of understanding of nature. A possible explanation for this can
be made from the discussion on the effect of grid size. As long as
there is some cutoff population size below which no harvesting is allowed,
and this cutoff assures that the absorbing state cannot be reached with
probability one, then our management can only damage the stocks to a
degree.

All of the policies examined in this paper have such a minimum
cutoff. The rest of the policy will determine the relative mean and
variance of the harvest, and techniques are presented to examine these
features in detail. Uncertainty about the values of the parameters will
affect the total return, but present estimates often can give a
satisfactory approximation. The truly risk adverse decisionmaker can
use present estimates of the parameters that are weighted to be on the

cautious side.
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SUMMARY

Uncertainty in fisheries management can be faced head on. Techniques
exist that allow us to gain much insight on managing randomly varying
populations. Optimization procedures allow us to reduce our attention
to the few best policies, and analyze their properties, rather than pick
policies ad hoc that meet no special criteria.

Optimization under uncertainty can also lead to a reconsideration
of what is valued in managing a fishery--in the examples considered, some
consistency in the amount harvested is a desirable alternative to high
year-to-year fluctuations in the harvest size. But this reduced the
average per period catch. Only in extreme situations, where the case of
smoothing out the catch is greater than the unit value of the catch, does
any policy resembling MSY become optimal.

Finally, it is possible to obtain an understanding of how robust
the management measures are to misspecifications of the underlying model.
This is important, since the model is only a guide to our decisionmaking,
not THE ANSWER. In the models considered, the "best" policies are robust
in view of this uncertainty.

A question not examined is the assumption that the population size
is observed at the start of each period. This too is usually costly, and
inexact. Recently, this author and Professor E. J. Sondik developed an

efficient algorithm that addresses the relative merits of different
<

£,
o

sampling intervals for obtaining population estimates.? Together, all
of these techniques allow for an integrated, realistic approach to

management under uncertainty.
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Table 1.--Optimal policies for the different grid sizes.

Wood River Grid size Branch River
y, = min (x_, 0.9333) 16 y, = min (x_, 0.3333)
Ve = min (xt, 0.840) 26 Y = min (xt, 0.4000)
Ve = min (xt, 0.700) 51 Y, = min (xt, 0.3000)
Ve = min (xt, 0.770) 101 Ve = min (Xt’ 0.3500)
v, = min (xt, 0.742) 501 Ve = min (xt, 0.3500)

Equilibrium stock 0.735 Deterministic Equilibrium stock 0.345




v/c 00Gc°0 £T6t £8°7¢C ¢L'0 ¢156°0 8E0L°0 666570 6
8/€ 00570 £79¢ L°6¢ 6°T £69%°0 70z’ 0 026570 38
/T 00%°0 £ It L°L3 ' 1 Ly6eS0 £L0£°0 [AXA M| L
/T 00570 [ANAS ¢ T¢ 176 €050 A% TANY 0629°0 9
1/0 00S'0 oY 8'T¢ AN 0TE9 0 786£°0 8¢59°0 c

I9ATY Youmig

Z/T 86°0 oy Ly 0T ¢0°0 886L°0 861570 610T"1 Y
/1 1670 (AR L L T'T 9908°0 9069°0 £0ZT'T £
8/1 86°0 8°6¢ £°0T L1 68€L°0 09%5°0 £660°T [4
1/0 8670 6t 8’91 9°g z026°0 89%8°0 LSET"T 1

I9ATY POOM

aorad/3uryjroows (oied yoJEo uUBSW  UBOW JO %47 YDIBD OU UOTIBTAIP 1s9axeY ageazey £oT70d
1onTeEA DATIETOY URTPSR UBY] I93Bd13  uBY] SSIT 2wty ¥ paepuelg poraad aad potaad
awty ¥ amyy ¥ Jo 90uBTaEA J13d UEBIY

-goToTTod 1500 BuTyioows 2yl Surjeurxoxdde soTofTod SUTU 9Yj I0F SOTISTIBIS TBITA--"T 2TYEL



78" % 890€°0 L0670 (0g*0 *7¥X) urm 6L5°0 000°2- youeag

8¢ ¥5¢<0 686°1 (ov°0 ﬁumv uTu 6.5°0 00s°1T- youeag

- - - (s€°0 .uxv uTm 89°0 1 youeag

AT £62¢°0 Z¢T19°0 (ge-0 .uxv UTm 8%°0 ey 1- youeig

6C°¢ 6£8%°0 €ii6"0 (095°0 .uxv uTu 8s% 0 000" - pooM

8¢ 9ETE"T g01a"1 (08670 nuxv urm 8¢%°0 009°0- pooM

B™L cene 1 £922°1 (£2°0 .uxv urum G¢ 0 008 0- pooM

6L°0 9L606L°0 0890°1 (L°0 .uxv utm ceo 008°0- PooM
189A1BY OU BWI] ¥  OOUBTIB)  I853a1vy potaad £otTod TRWTIdp 0 JO °nTBA mm JO SNTEBA I9ATYH

19d uesy

‘siojeueied paTiea UITA STRTAL--"EE 3Tqe]



T0°0> 10°0> 10°0 8€°0 1%°0 #0°T
£0°0 £€0°'0 20°0 ) 16°0 v
m\H ) :\m ‘ w\ﬁ :\H ..N\ﬁ ¢ :\H m\H ) m\H ‘ m\ﬁ m\ﬂ .:\m ‘ w\H :\ﬁ ) N\H : :\ﬁ m\ﬁ ) m\H ‘ ¢
ure3I9oun ST O uaym urelILun st Nm usym

youeag
pooM

UOTINGFIISTP
£31T1qRq01d

*Ao110d sedeg enay syl ol paiedwod

“forTed @3ewixoadde 9yl JO SnTBA UT UOTIETASp 9[qTssod 3s98IBT--'qg ITJEL



CUMULATIVE PROBABILITY
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Figure 1(a).--Ergodic cumulative distribution for an optimal
harvesting strategy for the Wood River, on grid sizes of 16,

26, 51, and 101 points.
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Figure 1(b).--Ergodic cumulative distribution for an optimal
harvesting strategy for the Branch River, on grid sizes of 16,

26, 51, and 101 points.
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Figure 2(a)-(m).-~Optimal policy functions for the Wood River
for various assumptions about the relative value of smoothing

costs. (See text for details.)
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Figure 3{a)-(m).--Optimal policy functions for the Branch River
for various assumptions about the relative value of smoothing

costs. (See text for details.)
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